Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations.
نویسندگان
چکیده
We determine an exact asymptotic expression of the blow-up time t(coll) for self-gravitating Brownian particles or bacterial populations (chemotaxis) close to the critical point in d=3. We show that t(coll) = t(*) (eta- eta(c) )(-1/2) with t(*) =0.917 677 02..., where eta represents the inverse temperature (for Brownian particles) or the mass (for bacterial colonies), and eta(c) is the critical value of eta above which the system blows up. This result is in perfect agreement with the numerical solution of the Smoluchowski-Poisson system. We also determine the exact asymptotic expression of the relaxation time close to but above the critical temperature and derive a large time asymptotic expansion for the density profile exactly at the critical point.
منابع مشابه
On the Analogy between Self-gravitating Brownian Particles and Bacterial Populations
We develop the analogy between self-gravitating Brownian particles and bacterial populations. In the high friction limit, the self-gravitating Brownian gas is described by the Smoluchowski-Poisson system. These equations can develop a self-similar collapse leading to a finite time singularity. Coincidentally, the Smoluchowski-Poisson system corresponds to a simplified version of the Keller-Sege...
متن کاملCritical mass of bacterial populations and critical temperature of self-gravitating Brownian particles in two dimensions
We show that the critical mass Mc = 8π of bacterial populations in two dimensions in the chemotactic problem is the counterpart of the critical temperature Tc = GMm/4kB of self-gravitating Brownian particles in two-dimensional gravity. We obtain these critical values by using the Virial theorem or by considering stationary solutions of the Keller-Segel model and Smoluchowski-Poisson system. We ...
متن کاملPostcollapse dynamics of self-gravitating Brownian particles and bacterial populations.
We address the postcollapse dynamics of a self-gravitating gas of Brownian particles in D dimensions in both canonical and microcanonical ensembles. In the canonical ensemble, the postcollapse evolution is marked by the formation of a Dirac peak with increasing mass. The density profile outside the peak evolves self-similarly with decreasing central density and increasing core radius. In the mi...
متن کاملExact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature.
We provide an exact analytical solution of the collapse dynamics of self-gravitating Brownian particles and bacterial populations at zero temperature. These systems are described by the Smoluchowski-Poisson system or Keller-Segel model in which the diffusion term is neglected. As a result, the dynamics is purely deterministic. A cold system undergoes a gravitational collapse, leading to a finit...
متن کاملSelf-gravitating Brownian systems and bacterial populations with two or more types of particles.
We study the thermodynamical properties of a self-gravitating gas with two or more types of particles. Using the method of linear series of equilibria, we determine the structure and stability of statistical equilibrium states in both microcanonical and canonical ensembles. We show how the critical temperature (Jeans instability) and the critical energy (Antonov instability) depend on the relat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 70 2 Pt 2 شماره
صفحات -
تاریخ انتشار 2004